
Evaluation of Function Bases for
Spherical Light Signals

Rasmus Rønn Nielsen (jpm687)

Bachelor Thesis

Supervisor: Prof. Jon Sporring

Department of Computer Science
Januar 11, 2019

Abstract

In video game development, it is generally infeasible to fully simulate the interaction
between light and matter. To solve this problem, games usually sample the light environ-
ment by precomputing so-called light probes at selected points in space. These probes
are represented mathematically as spherical functions often referred to as signals. Com-
puter graphics literature offers several techniques to encode such spherical signals. Most
published works focus on just a single encoding technique. This thesis contributes by
comparing a selection of techniques.

To enable this comparison, an evaluation method is developed and implemented. A
selected set of spherical models are then evaluated using this method. This leads to a set
of measurement data, which are analysed to gain insight into the benefits and drawbacks
of each encoding technique. The result of the analysis is a set of recommendations about
which encoding techniques to use for particular types of spherical signals (irradiance,
radiance, and self-occlusion).

Additionally, this thesis serves as an introduction to spherical function bases for the
uninitiated reader with interest in this subject.

i

Contents

1 Introduction 1
1.1 Radiometric Quantities . 2
1.2 Light Probes . 3
1.3 Quality vs. Storage . 4
1.4 Thesis Outline . 5

2 Spherical Function Bases 6
2.1 Spherical Coordinates . 6
2.2 Spherical Functions . 7
2.3 Function Spaces . 8
2.4 Ambient Cube . 9
2.5 Spherical Harmonics . 10

2.5.1 Derivation . 11
2.5.2 Family of Basis Functions . 12
2.5.3 Orthonormality . 12
2.5.4 Real Spherical Harmonics . 13

2.6 Spherical Gaussians . 15
2.6.1 Properties . 17

3 Evaluation Method 19
3.1 Test Signals . 19

3.1.1 Radiance . 19
3.1.2 Irradiance . 20
3.1.3 Self-occlusion . 20
3.1.4 Comparison . 21

3.2 Models . 22
3.2.1 Ambient Cube Models . 22
3.2.2 Spherical Harmonics Models . 23
3.2.3 General Spherical Gaussian Models 24
3.2.4 Linear Spherical Gaussian Models 24

3.3 Function Fitting . 25
3.3.1 Linear Least Squares Fitting . 26
3.3.2 Orthogonal Projection . 27
3.3.3 Non-linear Fitting . 28

3.4 Metrics . 30
3.4.1 Relative Mean Absolute Error (RMAE) 30
3.4.2 Structural Similarity Index . 30

3.5 Implementation . 31

ii

CONTENTS CONTENTS

4 Analysis 33
4.1 Irradiance . 33
4.2 Radiance . 35
4.3 Self-occlusion . 37

5 Discussion 40
5.1 Validity of Results . 40
5.2 Current Trends . 40
5.3 Gaussian Sharpness Parameter . 41
5.4 Block/Cube Compression . 41
5.5 More Bases . 42

6 Conclusion 43

A Framework Compilation and Usage 47

iii

Chapter 1

Introduction

Rendering a 3D scene is fundamentally about simulating interactions between light and
matter. The light that ends up hitting our eyes’ retinas (or a camera sensor) determines
what we see. The first decade of real-time 3D video games did not do any real light
simulation, however. The required computational resources were simply not available.
Instead, game developers of the time pushed the available hardware to its limits via
clever tricks that somehow created the illusion of 3D worlds.

The phrase physically based rendering is often used to refer to a family of rendering
techniques based on the principles of physics. This idea was popularized by Matt Pharr,
Greg Humphreys, and Pat Hanrahan in 2004 with the release of their seminal book of
the same name [PHW10]. Among the adopters was the video game industry. This new
trend accelerated the race toward photorealism in games as show-cased in figure 1.1.
Today, full simulation of photons is still not possible in real-time. However, many of
the most dominant visual phenomena of light can now be approximated in real-time:
Fresnel-based reflection, translucency/transparency, conservation of energy, metallicity,
etc. Some games even simulate real-time global illumination, e.g. by using libraries like
Enlighten [Sil].

Physically based rendering is an extensive subject and beyond the scope of this thesis.
For a full treatment see [PHW10] and [AMHH18, Chapter 9].

In order to present the problem statement of this thesis, I must first provide some context.

(a) Wolfenstein 3D (1992),
Copyright id Software.

(b) Red Dead Redemption 2 (2018),
Copyright Rockstar Games.

Figure 1.1: Evolution of 3D video game graphics.

1

1.1. RADIOMETRIC QUANTITIES CHAPTER 1. INTRODUCTION

It is necessary to cover the basic quantities of radiometry (section 1.1) since these will
play a big role later. I will also introduce the concept of light probes (section 1.2) and
explain why they are an important part of modern video games. Equipped with this
background information, I will complete this introduction by presenting the problem
statement (section 1.3).

1.1 Radiometric Quantities

An important part of migrating to physically based rendering models is adopting the units
and quantities conventionally used within the field of physics. Radiometry is a branch of
physics that deals with the objective measurement of electromagnetic radiation, including
human-visible light (this is opposed to photometry that deals with the subjective human
perception of radiation). A full coverage of radiometry is beyond the scope of this thesis.
However, I will briefly introduce a few of the fundamental radiometric quantities since
these will be used extensively throughout the rest of this thesis.

Probably the most important quantity is radiance. Informally, it describes the power
carried by a ray of light. It is defined as the radiant flux emitted or received by a given
surface, per unit solid angle, per unit projected area. To aid in the understanding of this
definition, figure 1.2 shows the geometry of radiance. One way to get intuition about this
quantity is to imagine a device that measures the number of photons per second coming
from a small cone dω of directions centred around ω. The device’s sensor is a small area
dA⊥ that is oriented perpendicularly to ω. The device outputs the number of detected
photons divided by the solid angle of the cone, divided by the size of the sensor area. As
the sensor area and cone get smaller this value tends towards a certain number, and in
the limit you get radiance.

dA⊥

dω

ω

n

θ

Figure 1.2: The geometry of radiance. Radiance is the amount of infinitesimal flux, per
infinitesimal solid angle dω, per infinitesimal projected area dA⊥. θ is the angle between

a light ray and the surface normal n.

The other important quantity is irradiance which is defined as radiant flux per unit area.
Irradiance E at a point with surface normal n can be expressed in terms of incoming

2

1.2. LIGHT PROBES CHAPTER 1. INTRODUCTION

radiance L(ω) as

E(n) =

∫
Ω(n)

L(ω) cos θ dω (1.1)

where Ω(n) is the hemisphere of directions above n, dω is infinitesimal solid angle, and θ
is the angle between ω and n (see figure 1.2). Intuitively this expression is just summing
over all incoming light. The cosine term is there to account for the fact that light coming
from a shallow angle is spread over more area.

1.2 Light Probes

In order to render a 3D object, we need a description of the surrounding light environment.
Due to the intricate nature of light, this is not trivial to compute. Techniques such as
ray tracing solve the problem by tracing paths of light as they bounce around the scene.
Depending on the scene’s surface properties, this may be too computationally expensive
to do in real-time, even with modern techniques and hardware.

Instead of recalculating the light on demand for each pixel, we can instead sample the
light environment at selected positions in the scene and store the result for later use.
This sampling is often performed offline, i.e. before the game is running. Such samples
are referred to as light probes. Each light probe is thus a spherical function that describes
incoming light for all directions, for a particular point in the scene. We can approximate
the light information at an arbitrary point and direction by interpolating between close-
by light probes [Cup12]. Figure 1.3 shows an example of light probes placed in a 3D
scene.

Figure 1.3: Light probes are placed in the scene to sample the light environment.

There are several ways to visualize light probes (and spherical functions in general) as
shown in figure 1.4. Each projection comes with different benefits and drawbacks. The
equirectangular projection shows the entire light probe contents but has distortions (fig-
ures 1.4a and 1.4b). Perspective projection leverages our human intuition but it reveals
only part of the contents of the spherical function (figures 1.4c and 1.4d).

3

1.3. QUALITY VS. STORAGE CHAPTER 1. INTRODUCTION

(a) Radiance, equirectangular projection. (b) Irradiance, Equirectangular projection.

(c) Radiance, perspective projection. (d) Irradiance, perspective projection.

Figure 1.4: Light probe examples. © by [Vog10].

In practice, you need to decide which quantity you want to store in your light probes.
This choice depends on what kinds of light phenomena you want to simulate, but often
light probes hold irradiance. Figure 1.4 shows two light probes containing radiance and
irradiance respectively. Since irradiance E(n) is essentially the sum of incoming radiance
(see equation 1.1), it varies slowly as n changes.

1.3 Quality vs. Storage

Ideally, we would like to place infinitely many light probes everywhere in our game world.
However, hardware resources are finite and hence there is a limit to how many light probes
a video game can handle at once. Therefore we are interested in efficient ways to encode
our light probes. To increase the number of light probes, modern video games use lossy
compression techniques to reduce the storage requirements of each probe. But this comes
at the cost of reduced probe quality. This means that we have a trade-off between probe
quality and storage requirements. This begs the question:

How should we represent and store light probes such that quality is maximized and
storage requirements are minimized?

The problem of light probe encoding is the main theme of this thesis.

Efficient encoding of light probes is a hot topic among researchers [SKS02] [RH01]
[WGS+07] and video game industry professionals [ON] [Pet16] alike. Most published
works focus on just a single encoding method. In this thesis, I want to instead review
several popular methods and compare them by measuring their approximation errors.
Based on these measurements, I aim to synthesize a set of recommendations about which

4

1.4. THESIS OUTLINE CHAPTER 1. INTRODUCTION

encoding techniques to use for particular types of light probes.

1.4 Thesis Outline

For the convenience of the reader, I here provide a brief structural overview of this thesis.

• Chapter 1: Introduction
Sets the scene for the thesis.

• Chapter 2: Spherical Function Bases
Presentation of spherical function bases including introduction to spherical harmon-
ics and spherical Gaussians. This establishes the theoretical foundation on which
the thesis is based.

• Chapter 3: Evaluation Method
Here I explain what spherical models I wanted to evaluate and how I evaluated them.
This includes descriptions of error metrics, test signals, and fitting techniques.

• Chapter 4: Analysis
My evaluation method generates test data, and this data is analysed in this chapter.
Based on the analysis I derive a handful of key findings.

• Chapter 5: Discussion
Here I put my findings into perspective and consider future work.

• Chapter 6: Conclusion
Concludes the thesis by summing up the process and results.

5

Chapter 2

Spherical Function Bases

In this chapter I establish the theoretical foundations on which the rest of the thesis is
based. I will start with a review of spherical coordinates and functions (sections 2.1 and
2.2), and then move onto function spaces (section 2.3). Finally I will cover three spherical
bases that are used in the field of 3D graphics: ambient cube, spherical harmonics, and
spherical Gaussians (sections 2.4, 2.5, and 2.6).

2.1 Spherical Coordinates

The 3-dimensional Cartesian coordinate system is capable of describing spherical objects.
For example, you could describe points on the unit sphere by the equation x2+y2+z2 = 1.
However, sometimes it can be inconvenient to work with spherical objects in Cartesian
coordinates. The spherical coordinate system is an alternative way to represent objects
in 3-dimensional space. In this system the unit sphere is described by the equation r = 1
which is undeniably simpler than the Cartesian equivalent mentioned above.

x

y

z
p = (r, θ, φ)

θ

φ

Figure 2.1: The spherical coordinate system used in this thesis. r ∈ [0,∞[is the
distance from the origin. θ ∈ [0, π] is the polar angle, i.e. the angle between the vector p
and the z-axis. φ ∈ [0, 2π] is the azimuthal angle, i.e. the angle between the x-axis and

the point’s projection onto the xy-plane.

6

2.2. SPHERICAL FUNCTIONS CHAPTER 2. SPHERICAL FUNCTION BASES

1.000.750.500.250.000.250.500.751.00 1.000.750.500.250.000.250.500.751.00

1.00
0.75
0.50
0.25

0.00

0.25

0.50

0.75

1.00

0.2

0.4

0.6

0.8

1.0

(a) Constant radii.

0.4 0.2 0.0 0.2 0.4 0.4
0.2

0.0
0.2

0.4

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

0.2

0.4

0.6

0.8

1.0

(b) Varying radii.

Figure 2.2: Two equivalent visualizations of the spherical function |cos θ|.

There are several ways to specify a spherical coordinate system. In this thesis I will adopt
the convention specified in figure 2.1. With this convention, we can represent points in
R3 as triplets (r, θ, φ). However, here I am only interested in 3D directions which can be
thought of as points on the unit 2-sphere, i.e. p ∈ S2 and r = 1. For this reason, I will
often omit r and specify directions as 2-tuples, e.g. (θ, φ).

Using elementary trigonometry we can show the following relation between Cartesian
coordinates (x, y, z) and spherical coordinates (r, θ, φ):

x = r sin θ cosφ,

y = r sin θ sinφ, (2.1)
z = r cos θ.

This relation allows us to convert back and forth between Cartesian and spherical coor-
dinates.

2.2 Spherical Functions

A spherical function is simply a function that maps a direction (θ, φ) to some set, e.g. R.
If a function conveys information about a physical phenomenon, it can also be referred
to as a signal [Wik19]. In this thesis, I will use the word "signal" to refer to functions
that describe light.

There are several ways to visualize such functions and each of them has benefits and
drawbacks. In addition to the equirectangular projection and the perspective projection I
introduced in chapter 1, we may also use the visualizations exemplified in figure 2.2b. This
visualization draws a 3-dimensional shape where the distance between any surface point
and the origin equals the function value in the corresponding direction. This projection
appeals to our in-born intuition about spatiality to convey the structure of the spherical
function.

As with regular function defined on the real line, spherical functions are integrable. We
can understand spherical integration by thinking about the sphere surface as being divided

7

2.3. FUNCTION SPACES CHAPTER 2. SPHERICAL FUNCTION BASES

into a lot of tiny flat rectangles. If we make these rectangles smaller and smaller, the
sum of their areas converges to the area of the sphere. Figure 2.3 shows geometrically
that the area of each surface element is equal to r2 sin θ dθ dφ. We can add up all element
areas by integrating over all θ and φ. Using these observations and still assuming that
r = 1 we get ∫

S2

f(ω) dω =

∫ 2π

φ=0

∫ π

θ=0

f(θ, φ) sin θ dθ dφ.

This definition of sphere integration will come in useful throughout this thesis.

x

y

z

r dθ

r sin θ dφ
r

φ

θ

Figure 2.3: The area of the infinitesimal spherical surface element is r2 sin θ dθ dφ.

2.3 Function Spaces

One may think of vectors as arrows in euclidean space. However, the definition of vectors
and vector spaces allow for a much richer interpretation and application. Every type
of mathematical object that can be scaled and added can be considered a vector. This
includes functions since

(f + g)(x) = f(x) + g(x), (2f)(x) = 2 · f(x).

A function space is a vector space in which the basis vectors are functions. Points in a
function space are themselves functions, since they are just linear combinations of the
basis functions. The dot product defined in Rn is actually a specialization of the more
general concept of an inner product. There are several ways to define an inner product
for a given function space, but one natural definition is

〈f, g〉 =

∫
D

f(x)g(x) dx (2.2)

8

2.4. AMBIENT CUBE CHAPTER 2. SPHERICAL FUNCTION BASES

where D is the domain of f and g. In euclidean space, angles between vectors and
vector lengths can be calculated using the dot product. The inner product induces the
same quantities for functions. We can even use the inner product to project functions
onto other functions by applying regular projection techniques from elementary linear
algebra.

The set of possible function bases is infinite. In this thesis I will look only at basis
functions defined on the sphere. In the following section I will introduce various spherical
function bases and examine their properties.

−y,B4

−z,B6

−x,B2

y,B3

x,B1

z,B5

Figure 2.4: Ambient cube.

2.4 Ambient Cube

One of the first successful implementations of spatially variant indirect lighting in a
major game production was Valve’s source engine. Among other innovations presented
in [MMG06], they introduced the ambient cube basis. It consists of six basis functions
{B1, . . . B6}:

B1(x, y, z) =

{
x2 if x ≥ 0

0 if x < 0
B2(x, y, z) =

{
0 if x ≥ 0

x2 if x < 0

B3(x, y, z) =

{
y2 if y ≥ 0

0 if y < 0
B4(x, y, z) =

{
0 if y ≥ 0

y2 if y < 0
(2.3)

B5(x, y, z) =

{
z2 if z ≥ 0

0 if z < 0
B6(x, y, z) =

{
0 if z ≥ 0

z2 if z < 0

Figure 2.4 shows the association between axial directions and basis functions. With this
definition each basis function covers one of the six directions. For example, B1(x, y, z) =
x2 if x ≥ 0 and 0 otherwise. I have visualized basis functions B1 and B5 in figure 2.5.

The full model can then be written out as a linear combination of these basis functions,

f(v) =
6∑
i=1

aiBi(v), v ∈ R3. (2.4)

9

2.5. SPHERICAL HARMONICS CHAPTER 2. SPHERICAL FUNCTION BASES

0.750.500.250.000.250.500.75

0.75
0.50

0.25
0.00

0.25
0.50

0.75

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

0.750.500.250.000.250.500.75

0.75
0.50

0.25
0.00

0.25
0.50

0.75

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.5: Basis functions B1 (left) and B5 (right) of the ambient cube model.

To find the coefficients ai it is useful to know whether this basis is orthogonal, i.e. whether
it is true that

〈Bi, Bj〉 =

∫
S2

BiBj dω = 0 when i 6= j.

Due to the cases in the definition in equation 2.3 there is no straightforward way to
evaluate this integral. However, from the definition we can deduce:

• Bi(v) ≥ 0 because it is either a square or 0.

• The support of some basis functions overlap, i.e. there exists some v such that
Bi(v)Bj(v) > 0 for some i, j ∈ {1, . . . , 6}. This is apparent from the visualization
in figure 2.5.

These observations tell us that 〈Bi, Bj〉 6= 0 for some i, j and therefore the basis is not
orthogonal. Unfortunately, this means that we cannot easily use projection for finding
the coefficients. Since the model is linear in the coefficients we can instead use linear
least squares fitting. I will describe this technique in section 3.3.1.

2.5 Spherical Harmonics

In the 19th century the French mathematician Joseph Fourier showed that you can rep-
resent an arbitrary function f : R→ R with period L as a infinite linear combination of
sinusoids (under particular conditions). Using Eulers formula this can be expressed as

f(x) =
∞∑

n=−∞

cn exp

(
2πnxi

L

)
where cn are some constant coefficients. Each sinusoid is orthogonal to each other. A set
of these therefore comprise an orthogonal function basis from which you can construct
arbitrary functions. Spherical harmonics is the same idea applied to functions defined
on the sphere rather than the number line. In this section I will introduce spherical
harmonics and their properties.

10

2.5. SPHERICAL HARMONICS CHAPTER 2. SPHERICAL FUNCTION BASES

2.5.1 Derivation

The complete derivation of the SH functions is complicated and beyond the scope of this
thesis. However, instead of just citing their definition without explanation, I will in this
section provide a high-level overview of how they can be derived. The following is based
on [Wik18].

Laplace’s equation is a famous partial differential equation in which the divergence of the
gradient of a scalar field f(x) is set to zero,

∇ · ∇f =
n∑
i=1

∂2f

∂x2
i

= 0,

where xi are components of vector x ∈ Cn. Informally this equation means that f(x) is
equal to the average of its neighbours. In spherical coordinates this equation becomes

1

r2

∂

∂r

(
r2 ∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
= 0.

A common method for solving partial differential equations is separation of variables. If
we suppose f(r, θ φ) = R(r)Y (θ, φ) and apply this method we get two new equations
involving R and Y respectively. The latter is given by

1

Y

1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

Y

1

sin2 θ

∂2Y

∂φ2
= −λ

where λ is the ratio constant used during separation of variables. If we apply separa-
tion variables again by supposing Y (θ, φ) = P (φ)T (θ) we get two ordinary differential
equations:

1

P (φ)

∂2P

∂φ2
= −m2 and λ sin2 θ +

sin θ

T (θ)

d

dθ

(
sin θ

dT

dθ

)
= m2.

The first equation is fairly simple and its solutions are linear combinations of e±imφ with
the constraint that m is an integer. This constraint arises from the fact that P has pe-
riod 2π. The second equation is more involved but it can be shown that the solutions
are multiples of Pm

l (cos θ) for some non-negative l ≥ |m| where Pm
l are the associ-

ated Legendre polynomials. If we now combine these two results using our supposition
Y (θ, φ) = T (θ)P (φ) we arrive at the definition of the spherical harmonics:

Y l
m(θ, φ) = Km

l e
imφPm

l (cos θ) m, l ∈ N, l ≥ |m|. (2.5)

Note that the arbitrary coefficients of T (θ) and P (φ) have here been merged into one
constant Km

l . This constant is discussed in section 2.5.3.

In summary this means that Y l
m is the set of solutions to the angular part of Laplace’s

equation when expressed in spherical coordinates. It turns out that this set of functions
has particularly interesting properties.

11

2.5. SPHERICAL HARMONICS CHAPTER 2. SPHERICAL FUNCTION BASES

Degree l New basis functions Total basis functions
0 1 1 = 12

1 3 1 + 3 = 22

2 5 4 + 5 = 32

.
k 2k + 1 (k + 1)2

Table 2.1: The progression of the number of spherical harmonics basis functions.

2.5.2 Family of Basis Functions

From equation 2.5 we can see that spherical harmonics are comprised of a family of
functions parametrized by the degree l and order m under the constraint l ≥ |m|. Below
I show the first few basis functions for l ≤ 1 (arguments θ and φ omitted for brevity):

Y 0
0 =

1

2

√
1

π
, (2.6)

Y −1
1 =

1

2

√
3

2π
e−iφ sin θ, Y 0

1 =
1

2

√
3

2π
cos θ, Y 1

1 = −1

2

√
3

2π
eiφ sin θ. (2.7)

These expressions are computed directly from the definition in equation 2.5. Everytime
we increase the degree l by 1, we get 2(l+ 1) + 1 additional basis functions with order m
ranging from −(l + 1) to l + 1. For example, if l = 0 then we get a single basis function
and if l ≤ 1 then we get 1 + 3 = 4 basis functions (shown in equation 2.7).

Generally, the total number of basis functions for a family is given by (k + 1)2 where
l ≤ k for some constant k. I exemplify this pattern in table 2.1.

2.5.3 Orthonormality

A key property of the spherical harmonics is that they are orthogonal to each other with
respect to the standard inner product over the sphere. That is∫

S2

Y l
m(θ, φ)Y l′

m′(θ, φ) dω =

{
clm if m = m′ and l = l′

0 otherwise

where clm is some constant. As mentioned in section 2.5.1 we are allowed to choose the
coefficient Km

l as we please. We can use this fact to normalize the basis. Normalization
can be achieved by dividing Y l

m(θ, φ) with its own inner product akin to how you normalize
a vector in R3. It can be shown that this is effectively equivalent to choosing

Km
l =

√
2l + 1

4π

(l −m)!

(l +m)!

for the free coefficient in the spherical harmonics definition shown in equation 2.5. With
this choice of Km

l the basis becomes orthonormal, i.e.∫
S2

Y l
m(θ, φ)Y l′

m′(θ, φ) dω =

{
1 if m = m′ and l = l′

0 otherwise
.

12

2.5. SPHERICAL HARMONICS CHAPTER 2. SPHERICAL FUNCTION BASES

Orthonormal bases are particularly useful, for example with regards to function projec-
tion. Therefore I will adopt this definition of Km

l .

2.5.4 Real Spherical Harmonics

The general spherical harmonics functions Y m
l (θ, φ) are complex-valued. In the context

of computer graphics though, we usually restrict ourselves to a real-valued formulation.
It would be tempting to define these as simply ReY m

l (θ, φ). However, this would strip
out the sine terms of eimφ effectively making the basis worse at matching odd functions.
Ideally, we would like to have an equal number of sine and cosine terms. The common
definition of real spherical harmonics achieves this like so:

yml = (θ, φ) =

√

2 ImY m
l) for m < 0

Y 0
l for m = 0√
2 Re(Y m

l) for m > 0

=

√

2Km
l sin(−mφ)Pm

l (cos θ) for m < 0

K0
l P

0
l (cos θ) for m = 0√

2Km
l cos(mφ)Pm

l (cos θ) for m > 0

(2.8)

We multiply by
√

2 to maintain the orthonormality described in section 2.5.3. Note that
the real spherical harmonics are denoted with a lowercase yml . For m < 0 we extract the
imaginary part which contains the sines, and for m > 0 we extract the real part which
contains the cosines. This means that the resulting real basis holds a balanced mix of
sines and cosines as desired.

Using the relation between Cartesian and spherical coordinates (equation 2.1) and the
definition in equation 2.8 above, we can write the first real basis functions like polynomi-
als:

y0
0 =

1

2
√
π
,

y−1
1 = − 1

2π

√
3y, y0

1 =
1

2π

√
3z, y1

1 = − 1

2π

√
3x,

y−2
2 = . . . , y−1

2 =

√
15yz

2π
, y0

2 =

√
5(3z2 − 1)

4π
, y1

2 = −
√

15xz

2π
, y2

2 = . . .

...

Figure 2.6 shows the first 9 spherical harmonics functions. The functions generally become
more high-frequency as the degree l increases, analogous to the behaviour of Fourier series.
For example, figure 2.7 uses the spatial visualization to convey the shape of y0

4 and y2
4.

A useful observation is that the first basis function y0
0 is constant and therefore it encodes

signal averages. To see why this is true, suppose we want to project a spherical function
f : S2 → Rn into a spherical harmonics basis. Since the basis is orthogonal we can find
the first coefficient c0 using the inner product:

c0 = 〈y0
0, f〉 =

∫
S2

y0
0(ω)f(ω) dω =

∫
S2

1

2
√
π
f(ω) dω =

1

2
√
π

∫
S2

f(ω) dω

Hence c0 is proportional to the average value of f over the sphere.

13

2.5. SPHERICAL HARMONICS CHAPTER 2. SPHERICAL FUNCTION BASES

l = 0

l = 1

l = 2

m = −2 m = −1 m = 0 m = 1 m = 2
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Figure 2.6: The first 9 spherical harmonics functions.

−0.5
0.0

0.5 −0.5

0.0

0.5

−0.5

0.0

0.5

−0.75
0.00

0.75−0.75

0.00

0.75

−0.75

0.00

0.75

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Figure 2.7: Spatial visualization of basis functions y0
4 (left) and y2

4 (right).

14

2.6. SPHERICAL GAUSSIANS CHAPTER 2. SPHERICAL FUNCTION BASES

2.6 Spherical Gaussians

A multivariate Gaussian is a function of the form

f(x; a,µ,Σ) = a exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(2.9)

where µ ∈ Rn is the mean vector and Σ ∈ Rn×n is the covariance matrix. I show an
example of a 2-dimensional Gaussian with zero mean and Σ = I in figure 2.8.

3
2

1
0

1
2

3 3 2 1 0 1 2 3

0.02
0.04
0.06
0.08
0.10
0.12
0.14

Figure 2.8: A 2-dimensional Gaussian with µ = 0 and Σ = I.

The parameter a controls the overall height of the curve. In the special case where

a =
1√

(2π)n|Σ|

the Gaussian becomes a distribution with unit integral. The mean vector µ controls the
centre point of the curve, i.e.

argmax
x

f(x; a,µ,Σ) = µ.

Finally, the covariance matrix Σ controls the spread of the Gaussian for each dimension.
As Σ increases the bump generally gets thinner.

A spherical Gaussian is similar to the regular Gaussian except that it is defined on the
sphere rather than the number line. I show a visualization of this in figure 2.9. In the
plot, colour intensity corresponds to function value magnitude, e.g. higher values are
brighter.

In the regular Gaussian function (equation 2.9) the exponent controls the falloff. The
exponent is 0 when x = µ and becomes increasingly more negative as ‖x− µ‖ increases.
However, this distance metric is not suitable on the sphere since we here only deal with
directions rather than arbitrary points in space. Instead, spherical Gaussians use the
cosine of the angle between two directions to quantify direction similarity. This particular

15

2.6. SPHERICAL GAUSSIANS CHAPTER 2. SPHERICAL FUNCTION BASES

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.25
0.00

0.25
0.50

0.75
1.00

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.25
0.00

0.25
0.50

0.75
1.00

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.9: Visualization of spherical Gaussians with different parameters.

choice of distance metric has several nice properties. As shown in figure 2.10 the cosine
is smooth across the sphere and its range is conveniently [−1, 1]. Additionally, it can be
calculated efficiently using the Euclidian dot product, i.e. cos θ = vT1 v2 where v1 and v2
are direction vectors and θ is the angle between them.

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.25
0.00

0.25
0.50

0.75
1.00

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 2.10: Visualization of the spherical function cos θ = xT [0 0 1].

The full spherical Gaussian formula is defined in [WGS+07] as

G(v;p, λ, µ) = µ exp
(
λ(vTp− 1)

)
. (2.10)

The reason we subtract 1 is to make sure the exponent is never positive (to match the
behaviour of the regular Gaussian). G has three parameters:

• p ∈ R3 is the dominant direction (or symmetric axis). Since this vector represents
a direction it has unit length, i.e. ‖p‖ = 1.

16

2.6. SPHERICAL GAUSSIANS CHAPTER 2. SPHERICAL FUNCTION BASES

• λ controls the sharpness/spread of the lobe. This is similar to the regular Gaussian’s
Σ parameter.

• µ is the amplitude. It controls the overall height of the lobe similar to the regular
Gaussian’s a parameter. Here µ is a scalar, but in computer graphics it is often a
3D vector corresponding to an RGB value.

These parameters enable us to rotate and shape a spherical Gaussian function, as shown
in figure 2.9. This makes spherical Gaussians more versatile than the basis functions of
the ambient cube (section 2.4) and spherical harmonics (section 2.5).

If we sum several spherical Gaussians each with different parameters, we can create
arbitrarily complex functions:

f(v;P ,λ,µ) =
n∑
i=1

G(v;pi, λi, µi), P ∈ Rn×3,λ,µ ∈ Rn.

Each term in the sum corresponds to a distinct spherical Gaussian. Note that this means
that the dimensionality of all parameters has increased, e.g. µ is now a vector rather
than a scalar. The larger n, the more complex functions we can construct. For example,
in figure 2.11 I show a sum of three spherical Gaussians with different directions pi,
sharpnesses λi, and amplitudes µi.

0.750.500.250.000.250.500.75
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

1

2

3

4

5

Figure 2.11: A sum of three spherical Gaussians with different parameters.

2.6.1 Properties

One reason that regular Gaussians are heavily used is that they have certain useful
mathematical properties. Spherical Gaussians inherit these and I will mention a few of
them here.

17

2.6. SPHERICAL GAUSSIANS CHAPTER 2. SPHERICAL FUNCTION BASES

There exists a closed form expression for the integral of a spherical Gaussian:∫
Ω

G(v) dv =
2πµ

λ

(
1− e−2λ

)
.

Notice that the integral does not depend on the dominant direction p. This is expected
because we should be able to rotate a spherical Gaussian without its integral changing.
The fact that we can integrate a spherical Gaussian allows us to normalize it, which make
it feasible as a distribution function (just like the regular Gaussian).

The inner product of two spherical Gaussians G1(v;p1, λ1, µ1) and G2(v;p2, λ2, µ2) is
derived in [TS06] and is given by

〈G1, G2〉 =

∫
Ω

G1(v)G2(v) dv =
4πµ1µ2

eλ1+λ2

sinh d

d
where d = ‖λ1p1 + λ2p2‖ . (2.11)

This property can be useful for spherical convolution. If two functions f and g can be
approximated as spherical Gaussians, then we can efficiently calculate an approximation
of (f ∗ g)(v) using equation 2.11.

Together these properties make spherical Gaussias particularly interesting in areas such
as real-time graphics where computation time is of high priority and approximations are
often acceptable.

18

Chapter 3

Evaluation Method

In this chapter I will address how I constructed a list of models, and how I subsequently
evaluated these models. First, I will explain the test input signals that I used (section 3.1).
With this set of test signals in mind, I will next describe the particular models (section 3.2)
that I constructed based on the theoretical foundations presented in chapter 2. Next, I
will explain the mathematical techniques I used to fit the test signals onto each model
type (section 3.3). To complete the description of my method, I will also discuss the
particular metrics (section 3.4) that I used to measure the reconstruction quality of each
model. Finally, I will briefly explain how I implemented this evaluation method.

3.1 Test Signals

Before diving into the actual models it makes sense to discuss the test signals that I use
for evaluation. I have included three signal types: radiance, irradiance, and self-occlusion.

Since radiance and irradiance are physical quantities that cannot be negative, their theo-
retical range is [0,∞[. For this reason, these signals cannot be stored using the traditional
image formats such as JPG, PNG, etc. They are instead encoded using the Radiance
RGBE image format (.hdr) also known as the Picture file format [Lar].

3.1.1 Radiance

As explained in the introduction (section 1.1), radiance is a radiometric quantity that
describes radiant flux, per solid angle, per square meter. Radiance signals are usually
high-frequency as exemplified in figure 3.1. My test set includes 17 radiance probes
downloaded from the Internet [Vog10] [fCT]. The probes have decent variety: indoors,
outdoors, local lights, sky lights (cloudy day), simple motives, complex motives. In my
radiance test set, the signals are typically less than 1.0 but some of them contain numerous
bright spots caused by powerful light sources (maximum value is 116.5).

19

3.1. TEST SIGNALS CHAPTER 3. EVALUATION METHOD

Figure 3.1: Examples of radiance probes. © by [Vog10].

Figure 3.2: Examples of irradiance probes. © by [Vog10].

3.1.2 Irradiance

For each of the 17 radiance signals (described in section 3.1.1), we can derive a corre-
sponding irradiance signal E(n) using equation 1.1. To improve convergence time I used
cosine-weighted importance sampling [PHW10, p. 668] in my implementation:

E(n) =

∫
Ω(n)

L(ω) cos θ dω = lim
N→∞

1

N

N∑
i=1

L(ωi) cos θ
cos θ
π

= lim
N→∞

π

N

N∑
i=1

L(ωi),

where ωi ∈ S2 is drawn from distribution p(θ φ) = cos (θ)/π. The irradiance examples
shown in figure 3.2 are generated from the radiance signals exemplified in figure 3.1. It
is important to note that these signals are clearly of low frequency and thus likely to
be highly compressible. In my data set these signals have a maximum value of 4.72 but
typically their values are below 1.0.

3.1.3 Self-occlusion

One of the disadvantages of probe lighting is that local geometry is ignored. For non-
convex objects, in particular, this can cause the appearance of light where there really
should not be any. As an example, consider the light probe shown at the top of figure 3.3a.
If we were to draw a pixel inside the car, we would sample this light probe because it is the
closest one, and use the sample to shade the pixel. This is clearly wrong since the light
probe is not visible from inside of the car, and thus should not affect the shading. To solve
this problem we need additional visibility information. One solution is to precompute
objects’ self-occlusion as a spherical signal [IS17b]. Self-occlusion refer to the degree to
which an object provides shade onto itself from the surrounding environment.

20

3.1. TEST SIGNALS CHAPTER 3. EVALUATION METHOD

(a) Camera inside car. (b) Camera at tree base.

(c) Projection of car self-occlusion. (d) Projection of tree self-occlusion.

Figure 3.3: Examples of equirectangular projections of self-occlusion signals.

A self-occlusion signal describes whether the surrounding environment is visible in any
direction. Hence, it is a boolean signal as exemplified in figure 3.3. I generated these
signals myself using the Unity game engine [Unib] and free 3D models from Unity Asset
Store [Unia]. I did this by placing a camera in an partially occluded position as shown in
figures 3.3a and 3.3b. Next, I rendered the surrounding object into a cubemap, i.e. each
of the six axial directions is rendered into a separate square image. Finally, I transformed
this cubemap into the equirectangular projection as shown in figures 3.3c and 3.3d. Due
to time constraints and the manual work involved in this generation process, I included
only 6 signals of this kind in my test.

3.1.4 Comparison

Since these signal types have different properties, I found it insightful to compare and
contrast them. Radiance and self-occlusion may have discontinuities whereas irradiance
is completely smooth. Theoretically, radiance and irradiance are unbounded, but in my
data set the maximum value is 116.5. Self-occlusion only takes on the values {0, 1}. To
get some insight into the values these signals take on, I gathered a few simple statistics
which I have visualized in figure 3.4. Note that all signals have mean values below 1, but
irradiance and radiance both go well above 1.

21

3.2. MODELS CHAPTER 3. EVALUATION METHOD

Radiance Irradiance Self-occlusion

100

101

102
Maximum
Mean and standard deviation

Figure 3.4: Signal statistics grouped by signal type.

3.2 Models

As described in chapter 2, a spherical basis is a set of functions that can be used to
approximate an arbitrary spherical signal. If we deal with signals that represent light we
have to consider that it, in addition to direction, also depends on wavelength. Ideally
we would divide the human visible part of the electromagnetic spectrum into dozens
or hundreds of buckets of equal size, and then treat each bucket as a separate signal.
However, for video games this approach usually leads to more data than can be handled
during the time budget of a single frame. A popular compromise is to use only three
buckets, one for red, green, and blue respectively (RGB). I have adopted this convention
in this thesis.

I will use the word model to refer to a basis onto which I can fit an RGB triplet of signals.
In practice each colour channel is fitted onto the model separately. The result is a triplet
of coefficient sets, one for each of the three colours. Occlusion signals (section 3.1.3) are
exceptional in that they only have one channel.

Using the general bases discussed in chapter 2 I have constructed a total of 57 concrete
models with various configurations. I show a condensed overview of all the models in
table 3.1. Each model is a combination of:

• Some spherical basis functions, e.g. spherical harmonics.

• Number of bits used for floating point storage.

• Number of coefficients to store, i.e. the number of basis functions.

For all models it was natural to add variants with 16 bit and with 32 bit floating point
encoding of coefficients. However, initial experimentation suggested that almost no loss
occured when reducing precision from 32 bit to 16 bit. This led me to add an 8 bit
precision variant as well (see section 3.5).

In the following sections I will explain the models in greater detail.

3.2.1 Ambient Cube Models

Of the bases presented in chapter 2, the ambient cube is the simplest one. The number
of coefficients is fixed at 6, one for each axial direction. The only question is how to
represent and store the coefficients. Since the coefficients are real numbers and we want
to minimize storage costs, a natural choice is to use a floating point representation. But

22

3.2. MODELS CHAPTER 3. EVALUATION METHOD

Name FP Precision (bits #) Coefficients Fitting Method
Ambient Cube 32, 16, 8 6 Least Squares
SH 32, 32/16, 16, 16/8, 8 4, 9, 16, 25, 36, 49 Projection
Linear SG 32, 16, 8 4, 9, 16, 25, 36, 49 Least Squares
General SG 32, 16, 8 4, 8 Gradient Descent

Table 3.1: Model overview. SH = Spherical Harmonics, SG = Spherical Gaussians, FP
= floating point. Each model type has variants constructed from combinations of

floating point precisions and number of coefficients.

these representations come in different precisions variants (e.g. float and double in C),
so how many bits should we devote to each coefficient? Since there is no obvious answer
to this question, I included models that use 8 bit, 16 bit, and 32 bit precision respectively.

The ambient cube is linear in its parameters (equation 2.4) and I decided to use linear
least squares fitting. I present this fitting technique in section 3.3.1.

3.2.2 Spherical Harmonics Models

As explained in section 2.5 spherical harmonics provide an infinite series of basis functions.
However, in practice we usually truncate this series to avoid having to store an infinite
number of basis coefficients. The video game industry often uses 4 or 9 coefficients per
channel for light probe signals [Gre03] [Slo08]. These relatively low numbers allow for fast
runtime reconstruction and compact representation. I adopted this convention but also
added models with 16, 25, 36, and 49 coefficients respectively. The primary motivation for
adding models with this many coefficients was that they may be useful for self-occlusion
signals. These signals are high frequency but require only a single channel and this may
afford more coefficients.

As mentioned in section 2.5.4 the first spherical harmonics coefficient is proportional to
the average of the approximated signal. The remaining coefficients encode how the signal
is distributed relative to that average. For light signals the average term is usually larger
than the rest of the terms, and thus it is likely to require higher encoding precision. For
this reason I decided to add models where the first coefficient has high precision (32 or
16 bit) and the rest have lower precision (16 or 8 bit).

How do we fit a signal onto a model based on spherical harmonics? As with the ambient
cube, the spherical harmonics representation is linear in its parameters so we could use
linear least squares. However, since spherical harmonics are orthogonal I will instead do
direct projection (equation 2.2) via numerical integration. Compared to least squares,
this is overall simpler and we avoid computing a potentially expensive matrix inversion.
I describe this fitting technique in section 3.3.2.

23

3.2. MODELS CHAPTER 3. EVALUATION METHOD

3.2.3 General Spherical Gaussian Models

Recall from section 2.6 that we can approximate arbitrary functions using a sum of n
spherical Gaussians:

f(v) ≈
n∑
i=1

Gi(v) =
n∑
i=1

µie
λi(v·pi−1). (3.1)

From equation 3.1 it is clear that this model is not linear in the parameters λ, and p.
This means that I had to use non-linear fitting techniques. I chose to use gradient descent
simply because I was familiar with this method. This fitting approach is further discussed
in section 3.3.3.

Each spherical Gaussian requires four parameters: amplitude, sharpness, and 2 numbers
to parametrize the direction pi = pi(θi, φi). The total number of coefficients will thus be
4n. To enable interesting comparisons it was important to choose n such that the final
number of coefficients was close to the number of coefficients used by the other models.
I wanted to add models with n = 1, 2, 4, 8 effectively yielding models with 4, 8, 16, 32
coefficients respectively. However, despite application of various of the known gradient
descent techniques, I did not manage to make my implemetation stable for models with
n = 4, 8. I suspect that the gradient descent method is simply not well-suited for this
model. It would be interesting to examine whether alternative non-linear optimization
methods would perform better, but this is beyond the scope of this thesis. For this reason
I settled on only 2 models with 4 and 8 coefficients respectively (n = 1, 2).

The reason that I used the word "general" in the title of this section, is that all parameters
(i.e. µ, λ, and p) are free in this model. This is opposed to "Linear Spherical Gaussians"
which I will describe in section 3.2.4 where only the amplitude µ is free.

3.2.4 Linear Spherical Gaussian Models

In the general spherical Gaussian model (section 3.2.3) all parameters were free and part
of the fitting problem. Inspired by [Pet16] I decided to add a simpler version of the
spherical Gaussian model in which only the amplitude parameters µi are free, while the
sharpnesses λi and directions pi are fixed at some predetermined values (see equation 3.1
above). By doing this we lose some of the flexibility of spherical Gaussians, but there are
benefits as well:

• Since we only need to store the amplitudes, i.e. µi, we can now store 4 times as
many spherical Gaussians in the same amount of space (compared to the general
spherical Gaussian model).

• The model becomes linear in its parameters and this means we can use the simpler
and faster linear least squares fitting method (section 3.3.1).

• We avoid a bit of overhead during reconstructing. Specifically we can avoid the
trigonometric function calls requried by pi(θi, φi) because pi is now predetermined.

This begs the question: If directions and sharpnesses are predetermined, how do we
find appropriate values for these? Since we have no directional information a priori, it

24

3.3. FUNCTION FITTING CHAPTER 3. EVALUATION METHOD

makes sense to choose directions that are evenly spread over the sphere. To generate
these directions I used the spherical version of Vogel’s Method [Art15]. As illustrated in
figure 3.5 this provides directions that are evenly spread across the sphere.

0.75
0.50

0.25
0.00

0.25
0.50

0.75

0.750.500.250.000.250.500.75

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75

1.00

Figure 3.5: A sum of 36 Gaussians where directions are generated using Vogel’s method.
In this plot the sharpness parameters λi are exagarated for illustrative effect.

Likewise, we have no information a priori whether light from any direction is better
approximated with a narrow or wide Gaussian, and therefore it makes sense to use the
same sharpness parameter for all terms, i.e. λi = λ. I came up with the heuristic λ = n/k
where n is the number of Gaussians in the sum and k is a constant. The reasoning behind
this choice is as follows: As the number of spherical Gaussians n increases, the distance
between each Gaussian decreases, and this allows us to make each Gaussian sharper
while still covering the whole sphere. I further hypothesized that the optimal k would
be different for each type of signal due to their different frequency contents. Simple
experimentation suggested that this was indeed correct. I found that the following values
were suitable: k = 1 for radiance, k = 10 for irradiance, and k = 4 for occlusion signals.

I chose to use the same numbers of coefficients as in the spherical harmonics based
models, i.e. 4, 9, 16, 25, 36, and 49. By using the same number of coeffients the
comparison becomes more fair and thus the results become more insightful. As with the
other models, I add variants of the linear spherical Gaussians with respectively 8, 16, and
32 bit floating point precision.

3.3 Function Fitting

Fitting is the process of finding a set of parameters p such that the difference between a
given input function f(x) and a model function g(x;p) with parameters p is minimized.
There are many known ways to address this problem. Which technique to use depends

25

3.3. FUNCTION FITTING CHAPTER 3. EVALUATION METHOD

on the characteristics of the particular model. In this section I will describe the fitting
processes that I used for the various models described in section 3.2.

3.3.1 Linear Least Squares Fitting

Several of the spherical function models presented in this thesis are linear in their param-
eters, e.g. the ambient cube (section 2.4) and spherical Gaussians with fixed direction
and sharpness values (section 3.2.4). We can use linear least squares fitting to find the
optimal parameters for these models. In this section I will describe this technique in
general so that it can be applied to any model that is linear in its parameters.

If a model is constructed as linear combinations and parametrized only by the coefficients
of these combinations, i.e.

g(x;p) =
n∑
j=1

pjgj(x),

then the model is said to be linear in its parameters. However, note that the gj(x)’s are
allowed to be non-linear. Using a given input function f(x) we can generate a set of m
sample points {(xi, yi)|yi = f(xi)} simply by evaluating f at various points in its domain.
The goal is to find a parameter set p such that g(xi;p) = yi for all i. We can formalize
this as a system of equations, which can be written in matrix form:

p1g1(x1) + . . .+ pngn(x1) = y1
...
p1g1(xm) + . . .+ pngn(xm) = ym

 =⇒

g1(x1) . . . gn(x1)
...

g1(xm) . . . gn(xm)

p1

...
pn

 =

y1
...
ym

The matrix equation on the right can be written succinctly as Ap = y where A ∈ Rm×n.
Most often we need more samples than there are basis functions in g(x;p), i.e. m > n.
This means that Ap = y is an over-determined system with no solution. Instead we
want to find "the best possible" parameter set p′ which we define to be the solution that
minimizes the squared distance between Ap and y, i.e.

p′ = argmin
p
‖Ap− y‖2. (3.2)

You could solve this minimization problem using calculus (derivative testing), but I choose
to instead use the linear algebra approach. The distance ‖Ap− y‖ is minimized precisely
when Ap = ProjA(y) as shown in figure 3.6, so therefore Ap′ = ProjA(y). This means
that Ap′ − y is orthogonal to all columns of A.

We can use this orthogonality property to derive an expression for p′:

AT (Ap′ − y) = 0

=⇒ ATAp′ = ATy

=⇒ p′ =
(
ATA

)−1

ATy

With this expression we can directly calculate p′, i.e. the parameter set that minimizes
‖Ap− y‖2. When working with the least squares method, we have to be careful about

26

3.3. FUNCTION FITTING CHAPTER 3. EVALUATION METHOD

y

ProjA(y) = Ap′

Ap′ − y
colA

Figure 3.6: Projecting vector y onto colA.

how we interpret this. Ideally we would like to minimize the absolute value of the dif-
ference between f(x) and g(x;p) over all x. However, this is not what the p′ solution
represents. Consider that

‖Ap− y‖2 =
m∑
i=1

[
(Ap)i − yi

]2
=

m∑
i=1

[
g(xi;p)− yi

]2
.

From this we can see that p′ instead minimizes the squares of the differences. Although
this is not ideal, least squares fitting remains a valuable tool in practice due to its sim-
plicity.

3.3.2 Orthogonal Projection

Linear function fitting is extraordinarily easy when dealing with orthogonal bases. If gi
and gj are part of an orthonormal basis we know that

〈gi, gj〉 =

{
1 if i = j,

0 otherwise.

Suppose an arbitrary function f(x) can be decomposed in terms of the basis functions
{gi} where i ∈ {1, . . . , n}, then

f(x) =
n∑
i=1

cigi(x).

Now take the inner product with respect to some function in the basis gj on both sides:

〈f, gj〉 =

〈
n∑
i=1

cigi(x), gj(x)

〉
=

n∑
i=1

ci〈gi, gj〉 = cj. (3.3)

We see that coefficient cj is equal to the inner product of f and gj (only if {gi} is orthog-
onal). As explained in section 2.5.3, one of the great properties of spherical harmonics
is that they are in fact orthogonal. This means that for arbitrary function f we can
calculate its coefficients simply by using equation 3.3 with the real spherical harmonics
basis functions (equation 2.8), i.e.

cml = 〈f, yml 〉 =

∫
S2

f(ω)yml (ω) dω.

27

3.3. FUNCTION FITTING CHAPTER 3. EVALUATION METHOD

An interesting fact is that the linear least squares technique described in section 3.3.1
turns out to reduce to integrating against basis functions (as in equation 3.3) if the basis is
orthogonal. That is, orthogonal projection and linear least squares fitting are equivalent
in this case. For a full argument why this is true, see [Slo08, Appendix A6].

3.3.3 Non-linear Fitting

As mentioned in section 3.2.3 I wanted to fit the general spherical Gaussians using gradient
descent. Therefore I need to define a loss function and derive its gradient, and I will
do this in this section. I attempted to perform the following derivation purely using
matrix calculus. With help from my advisor I got half-way through but ultimately gave
up because I kept running into tensors and other exotic mathematical objects, which I
had no prior experience with. Below I will instead find the partial derivatives for each
component separately.

Suppose we are given a data set (xi, yi) composed of n samples from a real-valued function
defined on the sphere. Recall that xi is a direction vector, i.e. xi ∈ R3 and ‖xi‖ = 1. In
the context of this thesis, (xi, yi) are samples of light signals, e.g. radiance.

The model that we want to fit to, is a sum of k spherical Gaussians,

G(v) =
k∑
j=1

µje
λj(v·pj−1),

where µj, λj, and pj are the parameters for the jth Gaussian (section 2.6).

We can then define the ith error as the difference between the ith sample and the model:

εi(µ,λ,P) = yi −G(xi) = yi −
k∑
j=1

µje
λj(xi·pj−1).

where the function arguments are spherical Gaussian parameters (see section 2.6):

• µ = (µ1, . . . , µk) is a vector of amplitude parameters.

• λ = (λ1, . . . , λk is a vector of sharpness parameters.

• P = (p1, . . . ,pk) is a matrix where each column is a dominant direction parameter.

The full error function is then given by

f(µ,λ,P) =
n∑
i=1

[
εi(µ,λ,P)

]2
In order to perform gradient descent, I need to compute the gradient of f . To simplify
this calculation I choose to think of f ’s arguments as scalars rather than vectors and
matrices. Also I will use the fact that any direction vector vi can be calculated from
its polar and azimuthal angles, i.e. vi = vi(θv,i, φv,i) (see section 2.1 about spherical
coordinates). Using this I can reparametrize f :

f(µ,λ,p) = f(µ1, . . . , µk, λ1, . . . , λk, θp,1 . . . , θp,k, φp,1, . . . , φp,k)

28

3.3. FUNCTION FITTING CHAPTER 3. EVALUATION METHOD

The elements of the gradient ∇f is given by a vector of the function’s partial derivatives.
To save computation I first find a general expression for ∂f

∂z
where z is any argument of

f . For brevity I will omit arguments of the error term εi.

∂f

∂z
=

∂

∂z

n∑
i=1

ε2
i = 2

n∑
i=1

εi
∂εi
∂z

= 2
n∑
i=1

εi
∂

∂z

(
yi −G(xi)

)
= −2

n∑
i=1

εi

k∑
j=1

∂

∂z
µje

λj(xi·pj−1) (3.4)

I can now use the general expression in equation 3.4 to find the specific partials for each
"category" of parameters. For arbitrary but fixed m such that 1 ≥ m ≥ k:

∂f

∂µm
= −2

n∑
i=1

εi

k∑
j=1

∂

∂µm
µje

λj(xi·pj−1) = −2
n∑
i=1

εie
λm(xi·pm−1)

∂f

∂λm
= −2

n∑
i=1

εi

k∑
j=1

∂

∂λm
µje

λj(xi·pj−1) = −2µm

n∑
i=1

εie
λm(xi·pm−1)(xi · pm − 1)

The angular parts are slightly more complicated. I will here use the fact that xi and pj
can be rewritten in terms of their angular components (as discussed in section 2.1):

∂f

∂θp,m
= −2

n∑
i=1

εi

k∑
j=1

∂

∂θp,m
µje

λj(xi·pj−1) = −2
n∑
i=1

εi

k∑
j=1

µje
λj(xi·pj−1)λj

∂

∂θp,m

(
xi · pj

)
= −2µmλm

n∑
i=1

εie
λm(xi·pm−1)

(
sin θx,i cos θp,m cos (φx,i + φp,m)− cos θx,i sin θp,m

)
.

To reach this expression I used the chain rule and the trigonemetric identity cos (a+ b) =
cos a cos b− sin a sin b.

Similarly, I derive the partial with respect to φp,m:

∂f

∂φp,m
= −2

n∑
i=1

εi

k∑
j=1

∂

∂φp,m
µje

λj(xi·pj−1) = −2
n∑
i=1

εi

k∑
j=1

µje
λj(xi·pj−1)λj

∂

∂φp,m

(
xi · pj

)
= −2µmλm

n∑
i=1

εie
λm(xi·pm−1) sin θx,i sin θp,m sin (φx,i − φp,m)

Here I used the identity sin(a− b) = sin a cos b− cos a sin b.

Now that I have identified all partials of f I am able to calculate the full gradient vector
for any point:

∇f =

[
∂f

∂µ1

. . .
∂f

∂µk

∂f

∂λ1

. . .
∂f

∂λk

∂f

∂θp,1
. . .

∂f

∂θp,k

∂f

∂φp,1
. . .

∂f

∂φp,k

]T
This allows me to perform gradient descent by iteratively stepping in the opposite direc-
tion of this gradient vector to find local minima.

29

3.4. METRICS CHAPTER 3. EVALUATION METHOD

3.4 Metrics

Given an approximation of a signal, how do you determine how good it is? For that you
need an error metric. An error metric is a function that maps an approximation to a
numerical value. This value usually represents error, so smaller is better. There are many
popular error metrics but you have to be careful which ones you choose. The well-known
root mean square error (RMSE) is often used for its simplicity, but since it squares each
error term, it causes larger error terms to have disproportionately large effect on the
total error. I also considered Mean absolute percentage error (MAPE) and Symmetric
mean absolute percentage error (SMAPE) but I did not find them suitable due to various
shortcomings.

To avoid having only a single perspective on my data, I chose two fundamentally different
error metrics. I will now describe these.

3.4.1 Relative Mean Absolute Error (RMAE)

In statistics the mean absolute error (MAE) is the sum of the absolute differences divided
by the number of samples:

MAE =
1

n

n∑
i

|yi − xi|

where yi is the original and xi is the reconstruction. This is fine for some use cases.
However, suppose we have a reconstruction with MAE = 1. Is this a good error? That
most likely depends on the mean value µ =

∑n
i=1 yi/n of the original signal. For example,

if µ = 1 then an error of 1 sounds bad, whereas if µ = 1000 then an error of 1 sounds
decent. To address this issue, I chose instead to use a relative variant of MAE:

RMAE =
MAE

1
n

∑n
i yi

=
1

µn

n∑
i

|yi − xi|.

Here MAE is divided by µ to get the error relative to the average of the original signal.
This adjustment allows me to meaningfully take the mean of each test signal’s RMAE.
The mean of the RMAEs can then be considered a net error that describes how well a
model performs across the entire set of test signals.

3.4.2 Structural Similarity Index

Error metrics used in the field of statistics are objective and based on numerical quantities.
But for some data sets one could argue that what really matters is the subjective human
perception of the error. The structural similarity (SSIM) index is a method introduced in
2004 [WBSS04] that aims to predict the perceived quality of digital images. SSIM strikes
a balance between computational simplicity, accuracy of prediction, and intuitiveness of
design [Bru12].

My signals are spherical but SSIM works only on flat 2D images. I solved this by pro-
jecting each signal as shown in figure 3.7. Then I apply SSIM on these new images. I

30

3.5. IMPLEMENTATION CHAPTER 3. EVALUATION METHOD

(a) Original probe data. © by [Vog10].
(b) 6-sided sphere projection.

Figure 3.7: SSIM metric is applied to projections like shown in (b).

assessed that this projection was suitable, since it resembles how light probes are used in
video games in practice.

A full explanation of the SSIM formula is beyond the scope of this thesis. For a thorough
introduction to SSIM, see [Bru12].

3.5 Implementation

I implemented my evaluation framework in the programming language Rust [Rus]. I
chose Rust because I find it expressive and safe, and because it compiles to fast machine
code. Besides implementing all models mentioned in chapter 2, I wrote procedures for
various spherical projections (section 3.4.2), gradient descent, image format transforma-
tions, coordinate conversions, simple tonemapping, and radiance to irradiance convolution
(section 3.1.2). I used open source libraries for matrix inversions [Cro], 16 bit floating
point encoding [Lon], structural similarity error calculation [Les], and general image file
encoding/decoding [N+].

Since I could not find any 8 bit floating point encoding library, I wrote a simple encoder
myself inspired by the source code of a library called "half" [Lon]. In this implementation
I chose to have 3 exponent bits and 4 mantissa bits (leaving a single bit for sign). This
partitioning yields a dynamic range of -15.5 to 15.5 while still preserving some precision
near zero.

The application was designed to be extensible. It defines simple interfaces (Rust traits)

1 fn fit(
2 models: &Vec<Model>, input_type: InputType,
3 test_signals: &Vec<HDRImage>, metric: &Metric
4) -> Vec<Dist1D>

Listing 1: Signature of fitting function (slightly simplified). The function accepts a
metric, an array of models, and an array of test signals. It returns an array of error

distributions, one for each model.

31

3.5. IMPLEMENTATION CHAPTER 3. EVALUATION METHOD

for models and metrics with the intention to make it easy to add more. Likewise, it should
be trivial to add new signal types. As an example of this, consider the function signature
shown in listing 1. This function accepts an array of models, an array of input images,
and a metric to use for evaluation. The motivation for this design was to encourage
experimentation.

See appendix A for information on how to compile and use the application.

32

Chapter 4

Analysis

Using the models and implementation discussed in chapter 3, I produced a set of error
measurements based on the metrics presented in section 3.4. In this chapter I aim to
make sense of this data. Since each signal type has different characteristics (as discussed
in section 3.1), I will analyze each of them separately.

Recall that the models I presented in section 3.2 use a varying amounts of space. It is
expected that the models using large numbers of coefficients and the models using high
floating point precision will perform better than the more austere models. But which
models provide the best reconstruction quality relative to their space requirements? I
will attempt to answer this question in the following sections.

4.1 Irradiance

As discussed in section 3.1.2, irradiance is usually very low frequency. Therefore I ex-
pected it to be a good candidate for compression. I show an irradiance reconstruction
example in figure 4.1 and as expected the reconstruction looks reasonable, at least at a
first glance. The reconstructed signal in figure 4.1b has low error and it is created from
only 54 bytes of data in total (9 coefficients, 3 channels, 16 bits each). This is a great
example of why spherical harmonics (and similar bases) are a great tool for representing
irradiance signals.

(a) Original, 256 × 128 HDR file, 99 KiB. (b) Spherical Harmonics, degree 2 (54 bytes).

Figure 4.1: Irradiance reconstruction example.

33

4.1. IRRADIANCE CHAPTER 4. ANALYSIS

25 50 75 100 125 150 175 200
Bytes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

RM
AE

Ambient Cube
SH, degree 1
SH, degree 2
SH, degree 3
SH, degree 4
SH, degree 5
SH, degree 6
Linear SG, 4 terms
Linear SG, 9 terms
Linear SG, 15 terms
Linear SG, 25 terms
Linear SG, 36 terms
Linear SG, 49 terms
General SG, 1 term
General SG, 2 terms

Figure 4.2: Relative mean absolute error versus space requirements for irradiance
signals. Each model has been given a distinct colour. Each model family has been

assigned a distinct symbol (cross, triangle, disc). Vertical line segments indicate relative
standard deviations. SH = Spherical Harmonics, SG = Spherical Gaussians.

Figure 4.2 shows how well each model performs on average as measured by the RMAE
metric (section 3.4.1). I have zoomed in on the lower left of the plot since this region
contains models that have low error and low space requirements. The dashed lines connect
models that have the same underlying mathematical representation but differ in floating
point precision. For example, the ambient cube family is comprised of models with 8,
16, and 32 bit precision respectively, and this is represented as three dots connected by
dashed lines (blue).

From the plot it is clear that error generally decreases as space usage rises (as expected).
The horizontal lines represent increases in storage usage that does not yield any mean-
ingful error reduction. Upon further examination, I learnt that these horizontal lines
represent the jump from 32 bit precision to 16 bit precision. This tells us that there is
virtually no reason to store coefficients at 32 bit because 16 bit is enough. This deserves
to be boxed:

16 bit of precision is often enough to encode irradiance coefficients.

The lower left of figure 4.2 represents low error, low space usage. It shows that the
spherical harmonics degree 2 model does particularly well by striking a good trade-off
between error and space requirements (marked with blue circle). The 9 term spherical
Gaussians is a close runner-up. Note that both models even have low standard deviation
(indicated by the vertical line segment in the figure). Models with larger space require-
ments than these two yield almost the same error. Thus, these models are presumably

34

4.2. RADIANCE CHAPTER 4. ANALYSIS

0 50 100 150 200 250 300
Bytes

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000
SS

IM

Ambient Cube
SH, degree 1
SH, degree 2
SH, degree 3
SH, degree 4
SH, degree 5
SH, degree 6
Linear SG, 4 terms
Linear SG, 9 terms
Linear SG, 15 terms
Linear SG, 25 terms
Linear SG, 36 terms
Linear SG, 49 terms

Figure 4.3: Structural similarity index versus space requirements for irradiance signals.

not worthwhile. Therefore:

For irradiance signals, Spherical Harmonics Degree 2 and 9-term Linear Spherical
Gaussians often represent a suitable trade-off in quality versus space requirements.

Additional terms/coefficients lead to rapidly diminishing returns.

Figure 4.3 shows space requirement versus the measured structural similarity errors for
irradiance. This data support what I already concluded from figure 4.2.

4.2 Radiance

Radiance is perhaps the most challenging of the three signal types. It has a wider range
than self-occlusion, and it is of higher frequency than irradiance. Therefore I expected
my models to provide only very crude approximations of this type of signal. I show
several reconstruction examples in figure 4.4. The approximation is very rough indeed.
Note however, that the space requirements decrease dramatically. The size of the original
probe is 1,6 MiB (1024 × 512 HDR file) and spherical harmonics-based approximation
(figure 4.4d) is only 294 bytes, a 5707x improvement.

In figure 4.5 I show a plot relating space usage to the RMAE metric (section 3.4.1). Note
that errors are generally large compared to the corresponding irradiance plot (figure 4.2).
This is presumably because radiance usually contains high frequency contents, which are
lost during the fitting process. This plot surprised me: It seems there is a tendency for
errors to increase as space usage increases. I speculated that this is because most models
optimize with respect to squared difference between original and model, whereas this
plot shows the linear difference. I verified this hypothesis by instead plotting according
to squared errors, and with this error metric the curve indeed decreased as space usage
increased, as expected (plot omitted for brevity).

As was the case with irradiance, we see that 16 bit is more than enough to represent
the coefficients. However, note that I have excluded the 8 bit variants of linear spherical

35

4.2. RADIANCE CHAPTER 4. ANALYSIS

(a) Original, 1024 × 512 HDR file (1,7 MiB). (b) Ambient Cube (12 bytes).

(c) Linear Gaussians, 49 terms (98 bytes). (d) Spherical Harmonics, degree 6 (98 bytes).

Figure 4.4: Comparison of reconstructions of a radiance signal.
Original probe © by [Vog10].

Gaussians models. This is simply because their coefficients were out of the 8 bit floating
point range, and thus not meaningful to include here. This shows a clear limitation of 8
bit floating point with regards to radiance.

16 bit of precision is enough to encode radiance coefficients. 8 bit precision often
fails completely for linear Spherical Gaussians.

We see that error is decreasing significantly as space usage increases, even as space usage
gets large. Note how this is different from irradiance that had severe diminishing returns
as storage increased. Interestingly, linear spherical Gaussians consistently perform better
than spherical harmonics. For example, the linear spherical Gaussians with 15 terms
performs better than spherical harmonics degree 6, even though the latter uses more
than three times as much storage (90 vs 294 bytes, assuming 16 bit coefficients).

Linear spherical Gaussians are consistently better than spherical harmonics at rep-
resenting radiance.

Intuitively, I suspect this is because the spherical Gaussians basis functions are more
pointy than spherical harmonics, and hence they are simply a better fit for radiance
which tends to have spikes (relatively small bright light sources).

Another interesting observation is that the non-linear spherical Gaussian performs the
best among models that use less than 50 bytes. This makes me wonder how well this
model would have faired if it was not capped at 2 terms (see section 3.2.3).

For the sake of brevity, I did not include the plot for the SSIM radiance errors. However, it

36

4.3. SELF-OCCLUSION CHAPTER 4. ANALYSIS

0 100 200 300 400 500 600
Bytes

2.6

2.8

3.0

3.2

3.4

3.6

RM
AE

Ambient Cube
SH, degree 1
SH, degree 2
SH, degree 3
SH, degree 4
SH, degree 5
SH, degree 6
Linear SG, 4 terms
Linear SG, 9 terms
Linear SG, 15 terms
Linear SG, 25 terms
Linear SG, 36 terms
Linear SG, 49 terms
General SG, 1 term
General SG, 2 terms

Figure 4.5: Relative mean absolute error versus space requirements for radiance signals.
Each model has been given a distinct colour. Each model family has been assigned a
distinct symbol (cross, triangle, disc). Vertical line segments indicate relative standard

deviations. SH = Spherical Harmonics, SG = Spherical Gaussians.

surprisingly showed that the linear Gaussian model with 9 terms outperformed the linear
Gaussian model with 49 terms. I investigated this and found that it is presumably because
of the imperfect sharpness parameter heuristic (λ = n/k) discussed in section 3.2.4. The
problem is illustrated in figure 4.6. This suggests that a better heuristic or alternative
method would improve the performance of spherical Gaussians even more. Solving this
issue is beyond the scope of this thesis and left for future research (section 5.3).

4.3 Self-occlusion

Self-occlusion signals can change abruptly from 0 to 1, but their ranges only contain
two elements, 0 and 1. Beforehand, I would expect these signals to be easier to fit than
radiance due to the reduced range, but harder to fit than irradiance due to their discon-
tinuities. I show reconstruction examples in figure 4.7. As expected, the reconstructions
are only rough approximations but decent ones nonetheless. The results are quite im-
pressive when you consider the reduction in storage requirements. In the case shown in
figure 4.7c, storage is reduced from 23 KiB (1024 × 512 PNG file) to only 98 bytes, a
240x improvement.

As with the other signal types, in figure 4.8 I show a plot relating space requirement
to RMAE (section 3.4.1). As expected, errors are generally higher than irradiance but
lower than radiance. From the figure it is clear that linear spherical Gaussians once again
outperform spherical harmonics (as was the case for radiance).

37

4.3. SELF-OCCLUSION CHAPTER 4. ANALYSIS

(a) Original. © by [Vog10].

(b) Linear Spherical Gaussian, 9 terms.

(c) Linear Spherical Gaussian, 49 terms.

Figure 4.6: These images show projections performed as part of the SSIM measurement
(section 3.4.2). My sharpness heuristic (section 3.2.4) makes the Gaussian bump too
sharp when there are many terms. This results in bright spots between dark bands, as

shown in (c) above.

(a) Original. (b) Ambient Cube (12 bytes).

(c) Linear Gaussians, 49 terms (98 bytes). (d) Spherical Gaussians, degree 6 (98 bytes).

Figure 4.7: Comparison of reconstructions of a self-occlusion signal.

38

4.3. SELF-OCCLUSION CHAPTER 4. ANALYSIS

0 20 40 60 80 100 120 140
Bytes

1.4

1.6

1.8

2.0

2.2

2.4

2.6
RM

AE
Ambient Cube
SH, degree 1
SH, degree 2
SH, degree 3
SH, degree 4
SH, degree 5
SH, degree 6
Linear SG, 4 terms
Linear SG, 9 terms
Linear SG, 15 terms
Linear SG, 25 terms
Linear SG, 36 terms
Linear SG, 49 terms
General SG, 1 term
General SG, 2 terms

Figure 4.8: Relative mean absolute error versus space requirements for self-occlusion
signals. Each model has been given a distinct colour. Each model family has been

assigned a distinct symbol (cross, triangle, disc). Vertical line segments indicate relative
standard deviations. SH = Spherical Harmonics, SG = Spherical Gaussians.

For self-occlusion signals linear spherical Gaussians consistently outperform spher-
ical harmonics.

From the plot I furthermore deduce that 16 bit is enough to represent self-occlusion
coefficients.

For the sake of brevity, I did not include the plot for the SSIM self-occlusion errors. In
general the SSIM measurement data supported the conclusions derived from the RMAE
metric (figure 4.8).

39

Chapter 5

Discussion

In this chapter, I will take a step back and consider the implications of my findings. First
I will make a few remarks about the validity of the results from chapter 4, i.e. what is
their domain applicability (section 5.1). Next, I will compare my findings for spherical
harmonics and spherical Gaussians, and relate this to some of the current trends in video
games (section 5.2). Finally, I will suggest three interesting research projects for the
future (sections 5.3, 5.4, and 5.5).

5.1 Validity of Results

My measurements are ultimately derived only from my particular set of test signals
(section 3.1). For this reason, my results (chapter 4) are not guaranteed to apply in
general and therefore they should not be treated as such. To produce equivalent results
that do apply in general, it would have been necessary to redo the evaluation using a
much larger set of test signals.

This being said, the irradiance and radiance test signals that I used did have some variety
to them (as detailed in section 3.1). Therefore I find it likely that my results concerning
these signal types do apply in some general cases. However, my set of self-occlusion test
signals was particularly small. This means that the credence we assign to these results
should be correspondingly low.

At the very least, my results apply for all input signals that are sufficiently similar to the
test signals that I used for my measurements. Generally, my results can be considered a
decent starting point when facing the choice of which spherical basis to use to encode a
given set of signals.

5.2 Current Trends

While spherical harmonics are widely adopted within the video game industry, spherical
Gaussians are used less frequently. It is well-known that spherical harmonics of 2nd degree
is a suitable basis to encode irradiance signals [RH01]. Therefore, it was not surprising
that my measurements showed exactly this. Interestingly though, the linear spherical

40

5.3. GAUSSIAN SHARPNESS PARAMETER CHAPTER 5. DISCUSSION

Gaussian model also did well for irradiance, almost as good as spherical harmonics. For
both radiance and self-occlusion however, linear spherical Gaussians turned out to con-
sistently outperform spherical harmonics. Consider that the spherical Gaussian models
used in this thesis achieved these results even with a less-than-optimal heuristic for its
sharpness parameter, λ (section 3.2.4). This suggests that they may be able to perform
even better with minor changes (see section 5.3). Therefore it seems likely that video
games may benefit from considering spherical Gaussians instead of spherical harmonics
in some cases.

Irradiance has been the most common quantity to store in light probes. However, in
recent years we have seen new types of data being stored in probes [IS17b] [Ste16], e.g.
self-occlusion and precomputed radiance transfer [SKS02]. As new ways of using light
probes emerge it is important to continuously consider which bases to use. My results
suggest that spherical Gaussians ought to be included in such considerations.

5.3 Gaussian Sharpness Parameter

An interesting aspect of spherical Gaussians compared to spherical harmonics is that they
are inherently more flexible, i.e. they have more parameters to tweak. In this thesis, I
used a simple heuristic for the sharpness parameter λ (section 3.2.4). For future research,
it would be interesting to find better ways to treat this parameter. Figure 5.1 gives an
idea of the potential improvements. By manually tweaking the sharpness parameter λ for
49-term spherical Gaussian, I was able to reduce the RMAE (section 3.4.1) of a radiance
probe reconstruction by 13%.

(a) λ set via heuristic (section 3.2.4). RMAE = 0.696.

(b) λ manually set. RMAE = 0.603.

Figure 5.1: Spherical Gaussian reconstructions with differing sharpness parameter λ.

5.4 Block/Cube Compression

In this thesis, I have focused on how light changes as a function of direction. But the light
environment at a particular point in space also changes as a function of position. For

41

5.5. MORE BASES CHAPTER 5. DISCUSSION

some signal types this rate of change is typically relatively small. It would be interesting
to research whether we can exploit this fact by encoding several nearby light probes
together as a single entity. This is analogous to how JPG and similar image formats
work on blocks of pixels rather individual pixels. Instead of 2D blocks of pixels, we could
imagine 3D cubes containing uniformly distributed light probes.

5.5 More Bases

There are many known ways to represent light probes (and spherical functions in general)
and I have not been able to include them all. For future research, it would be interesting
to compare my results with similar evaluations of bases/models such as:

• Spherical Gaussians with fixed directions, but varying sharpnesses and amplitudes.

• Ambient Dice [IS17a].

• Spherical Wavelets [SS95].

• Low-resolution cubemaps with texture compression.

42

Chapter 6

Conclusion

In this thesis, I presented the theory of spherical function bases (chapter 2) and used this
to construct an evaluation method that quantifies reconstruction quality (chapter 3). I
focused particularly on signals related to lighting in 3D graphics: irradiance, radiance,
and self-occlusion (section 3.1). I wrote an implementation of this evaluation method
and used it to test the properties of a variety of spherical models (section 3.2). These
evaluation tests generated a set of measurement data from which I deduced a handful of
key findings (chapter 4). Finally, I put these findings into perspective and discussed how
we may improve the models further in the future (chapter 5).

The key findings were:

• Linear spherical Gaussian models consistently outperform spherical harmonics mod-
els in representing radiance and self-occlusion signals.

• 16 bit of floating point precision is often enough to encode coefficients for irradiance,
radiance, and self-occlusion.

• You can use 8 bit floating point precision to encode coefficients, but it reduces
quality significantly. 8 bit precision tend to overflow when it is used to encode
radiance with linear spherical Gaussian models.

• For irradiance signals, spherical harmonics degree 2 and 9-term linear spherical
Gaussians often represent a suitable trade-off in quality versus space requirements.
Additional terms/coefficients lead to rapidly diminishing returns.

As detailed in section 5.1 these results are not guaranteed to apply generally but can be
considered a decent starting point when considering a choice of basis.

In addition to the above list of findings, this thesis can serve as an approachable introduc-
tion to spherical function bases for the uninitiated reader with interest in this subject.

43

Bibliography

[AMHH18] Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. Real-time rendering.
AK Peters/CRC Press, 2018.

[Art15] Mary K Arthur. Point picking and distributing on the disc and sphere. Tech-
nical report, ARMY RESEARCH LAB ABERDEEN PROVING GROUND
MD WEAPONS AND MATERIALS RESEARCH, 2015.

[Bru12] Dominique Brunet. A study of the structural similarity image quality mea-
sure with applications to image processing. Technical report, University of
Waterloo, 2012.

[Cro] Sébastien Crozet. Nalgebra - linear algebra library. https://www.nalgebra.
org/. Online; accessed 8-Jan-2019.

[Cup12] Robert Cupisz. Light probe interpolation using tetrahedral tessellations. In
Game Developers Conference (GDC), 2012.

[fCT] USC Institute for Creative Technologies. High-resolution light probe image
gallery. http://gl.ict.usc.edu/Data/HighResProbes/.

[Gre03] Robin Green. Spherical harmonic lighting: The gritty details. In Archives of
the Game Developers Conference, volume 56, page 4, 2003.

[IS17a] Michał Iwanicki and Peter-Pike Sloan. Ambient dice. In Eurographics Sym-
posium on Rendering-Experimental Ideas & Implementations, 2017.

[IS17b] Michał Iwanicki and Peter-Pike Sloan. Precomputed lighting in call of duty:
Infinite warfare. SIGGRAPH 2017 Course: Advances in Real-Time Render-
ing in Games, 2017.

[Lar] Greg Ward Larson. Radiance file formats. http://radsite.lbl.gov/
radiance/refer/filefmts.pdf.

[Les] Kornel Lesiński. Dssim. https://github.com/kornelski/dssim. Online;
accessed 8-Jan-2019.

[Lon] Kathryn Long. half. https://github.com/starkat99/half-rs. Online;
accessed 8-Jan-2019.

[MMG06] Jason Mitchell, Gary McTaggart, and Chris Green. Shading in valve’s source
engine. In ACM SIGGRAPH 2006 Courses, SIGGRAPH ’06, pages 129–142,
New York, NY, USA, 2006. ACM.

44

https://www.nalgebra.org/
https://www.nalgebra.org/
http://gl.ict.usc.edu/Data/HighResProbes/
http://radsite.lbl.gov/radiance/refer/filefmts.pdf
http://radsite.lbl.gov/radiance/refer/filefmts.pdf
https://github.com/kornelski/dssim
https://github.com/starkat99/half-rs

BIBLIOGRAPHY BIBLIOGRAPHY

[N+] Sven Nilsen et al. image. https://github.com/PistonDevelopers/image.
Online; accessed 8-Jan-2019.

[ON] Yuriy O’Donnell and David Neubelt. Probulator. https://github.com/
kayru/Probulator. Online; accessed 2-Jan-2018.

[Pet16] Matt Pettineo. Lightmap baking and spherical gaussians. mynameis-
mjp.wordpress.com, 2016.

[PHW10] Matt Pharr, Greg Humphreys, and Jakob Wenzel. Physically Based Render-
ing: From Theory To Implementation. Morgan Kaufmann Publishers Inc.,
3rd edition, 2010.

[RH01] Ravi Ramamoorthi and Pat Hanrahan. An efficient representation for irra-
diance environment maps. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, pages 497–500. ACM, 2001.

[Rus] Rust Team. Rust progamming language. https://www.rust-lang.org/.
Online; accessed 11-Jan-2019.

[Sil] Silicon Studio. Enlighten - real time global illumination solution. https://
www.siliconstudio.co.jp/middleware/enlighten/en/. Online; accessed
2-Jan-2019.

[SKS02] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radiance trans-
fer for real-time rendering in dynamic, low-frequency lighting environments.
In ACM Transactions on Graphics (TOG), volume 21, pages 527–536. ACM,
2002.

[Slo08] Peter-Pike Sloan. Stupid spherical harmonics (sh) tricks. In Game developers
conference, volume 9. Citeseer, 2008.

[SS95] Peter Schröder and Wim Sweldens. Spherical wavelets: Efficiently represent-
ing functions on the sphere. In Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques, pages 161–172. ACM, 1995.

[Ste16] N Stefanov. Global illumination in tom clancy’s the division. In Game De-
velopers Conference, 2016.

[TS06] Yu-Ting Tsai and Zen-Chung Shih. All-frequency precomputed radiance
transfer using spherical radial basis functions and clustered tensor approxi-
mation. ACM Trans. Graph., 25(3):967–976, July 2006.

[Unia] Unity Technologies. Unity asset store - the best assets for game making.
https://assetstore.unity.com/. Online; accessed 10-Jan-2019.

[Unib] Unity Technologies. Unity (game engine). https://unity3d.com/. Online;
accessed 10-Jan-2019.

[Vog10] Bernhard Vogl. Lightprobes. http://dativ.at/lightprobes/, 2010.

[WBSS04] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Im-
age quality assessment: from error visibility to structural similarity. IEEE
transactions on image processing, 13(4):600–612, 2004.

45

https://github.com/PistonDevelopers/image
https://github.com/kayru/Probulator
https://github.com/kayru/Probulator
https://mynameismjp.wordpress.com/2016/10/09/new-blog-series-lightmap-baking-and-spherical-gaussians/
https://mynameismjp.wordpress.com/2016/10/09/new-blog-series-lightmap-baking-and-spherical-gaussians/
https://www.rust-lang.org/
https://www.siliconstudio.co.jp/middleware/enlighten/en/
https://www.siliconstudio.co.jp/middleware/enlighten/en/
https://assetstore.unity.com/
https://unity3d.com/
http://dativ.at/lightprobes/

BIBLIOGRAPHY BIBLIOGRAPHY

[WGS+07] Jiaping Wang, Minmin Gong, John Snyder, Baining Guo, and Peiran Ren.
All-frequency rendering of dynamic, spatially-varying reflectance. ACM
Transactions on Graphics, January 2007.

[Wik18] Wikipedia contributors. Spherical harmonics — Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/wiki/Spherical_harmonics, 2018.
Online; accessed 1-Oct-2018.

[Wik19] Wikipedia contributors. Signal — Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/wiki/Signal, 2019. Online; accessed 10-Jan-2019.

46

https://en.wikipedia.org/wiki/Spherical_harmonics
https://en.wikipedia.org/wiki/Signal
https://en.wikipedia.org/wiki/Signal

Appendix A

Framework Compilation and Usage

This thesis was submitted with a companion evaluation framework called sigeva, intro-
duced in section 3.5. It is implemented using version 1.29.1 of the Rust [Rus] programming
language. The application depends on the following Rust crates:

• nalgebra [Cro]: A linear algebra library.

• image [N+]: An image encoding and decoding library.

• half [Lon]: A library for encoding and decoding 16 bit floating point numbers.

• dssim [Les]: A library for calculating structural similarity index from two images.

The framework can be compiled using Rust’s package manager, cargo, using the com-
mand cargo build. This will download all dependencies and produce an executable in
target/debug/sigeva. For an optimized build you can use cargo build ––release.
The framework includes light probes, which can be found in the assets folder.

The application accepts several commands:

• > sigeva fit=[signal type],[metric]
This will fit signals of type [signal type] to all models and evaluate their error with
respect to [metric]. The output includes error mean and standard deviation for each
model. Possible values for [signal type]: irradiance, radiance, occlusion. Possible
values for [metric]: rmae, ssim, rmse.

• sigeva convert=[cubemap dir],[output file]
Convert a cubemap located in [cubemap dir] into equirectangular format written
to [output file]. The cubemap dir must hold files with names: PositiveX.png, Neg-
ativeX.png, PositiveY.png, NegativeY.png, PositiveZ.png, NegativeZ.png. These
files correspond to each face of the cubemap.

• > sigeva convolve=[in file],[out file]
Based on a equirectangular radiance signal stored in [in file], this command calcu-
lates a irradiance signal via diffuse convolution, and stores the result in [out file].
Technically, it is irradiance divided by pi that is stored in the output, so you must
multiply by pi to get real irradiance values.

• > sigeva project=[in file],[out file]
Performs a sphere projection of [in file] for each of the six axial directions, and write

47

APPENDIX A. FRAMEWORK COMPILATION AND USAGE

the results side by side into [out file]. [in file] must be in equirectangular format.

• > sigeva help
Prints out usage instructions.

For example, sigeva fit=irradiance,rmae will fit the built-in irradiance probes to all
models, and calculate their RMAE (section 3.4.1).

The framework has a dozen unit tests which can be executed using cargo test.

48

	Introduction
	Radiometric Quantities
	Light Probes
	Quality vs. Storage
	Thesis Outline

	Spherical Function Bases
	Spherical Coordinates
	Spherical Functions
	Function Spaces
	Ambient Cube
	Spherical Harmonics
	Derivation
	Family of Basis Functions
	Orthonormality
	Real Spherical Harmonics

	Spherical Gaussians
	Properties

	Evaluation Method
	Test Signals
	Radiance
	Irradiance
	Self-occlusion
	Comparison

	Models
	Ambient Cube Models
	Spherical Harmonics Models
	General Spherical Gaussian Models
	Linear Spherical Gaussian Models

	Function Fitting
	Linear Least Squares Fitting
	Orthogonal Projection
	Non-linear Fitting

	Metrics
	Relative Mean Absolute Error (RMAE)
	Structural Similarity Index

	Implementation

	Analysis
	Irradiance
	Radiance
	Self-occlusion

	Discussion
	Validity of Results
	Current Trends
	Gaussian Sharpness Parameter
	Block/Cube Compression
	More Bases

	Conclusion
	Framework Compilation and Usage

